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ABSTRACT 
It is well known that the Fourier analysis of X-ray diffraction peak profiles (as 

implemented by Warren and Averbach) can accurately determine the area- 
weighted average grain size of a fine-grained sample. Less well known is the 
fact that this method simultaneously yields a volume-weighted average grain 
size. Under certain circumstances, knowledge of these two weighted average 
grain sizes is sufficient to permit reliable estimation of the grain-size 
distribution, even when the distribution cannot be calculated directly from the 
Fourier coefficients, as is usually the case. We demonstrate this for a 
nanocrystalline Pd sample prepared by inert-gas condensation; average grain 
sizes and the grain-size distribution are estimated by X-ray diffraction profile 
analysis and compared with the same quantities measured directly by 
transmission electron microscopy (TEM). Very good agreement between the 
resulting average grain sizes is achieved only after compensating for the fact 
that diffraction profile analysis directly yields an average unit-cell column 
length rather than an average grain diameter. The agreement between the 
grain-size distributions determined by profile analysis and TEM was good for 
crystallite sizes larger than the area-weighted average grain size but deteriorated 
for smaller sizes due to the volume dependence of the diffraction peak intensity. 

$ 1 .  INTRODUCTION 
As the name suggests, nanocrystalline materials are made up of crystallites 

having characteristic sizes between about 2 and 50 nm. The typical crystallite sizes in 
conventional polycrystalline materials are several orders of magnitude larger. This 
difference can manifest itself in unusual or enhanced mechanical, magnetic or trans- 
port properties in the nanocrystalline state. For such properties, the deviation from 
conventional behaviour is a sensitive function of the crystallite-size distribution. 
Therefore, when comparing nanocrystalline materials with conventional materials, 
one must have a reliable method for measuring the average crystallite size and the 
crystallite-size distribution. 

There are two basic approaches to measuring crystallite sizes in nanocrystalline 
materials: direct imaging using transmission electron microscopy (TEM) and indirect 
measurement using X-ray diffraction. Direct imaging is capable of yielding the entire 
distribution of crystallite sizes in a sample, but it requires time-consuming and often 
challenging sample preparation and image analysis. Furthermore, the volume that 
one can examine in the microscope is always very small in comparison with the entire 
sample, leading to uncertainty as to whether a truly characteristic region of the 
sample was investigated. X-ray diffraction, on the other hand, averages over a 
much larger fraction of the sample, and the necessary sample preparation is often 
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622 C .  E. Krill and R. Birringer 

minimal. Unfortunately, the usual methods for analyzing wide-angle X-ray diffrac- 
tion data generally yield simply an average crystallite size rather than the entire 
crystallite-size distribution. Even more sophisticated techniques, such as the 
Fourier analysis of diffraction peak profiles, have limited ability to determine crystal- 
lite-size distributions in samples containing a significant amount of inhomogeneous 
strain. 

In this paper we propose a method for estimating the grain-size distribution in a 
nanocrystalline material from the results of a Fourier analysis of X-ray diffraction 
peak profiles. This technique is applicable even when mathematical instability pre- 
vents calculation of the grain-size distribution by direct differentiation of the Fourier 
coefficients. Our method presupposes that the mathematical form of the distribution 
function is known independently, a condition that is often met for nanocrystalline 
samples, since the distribution form in such materials is frequently determined by the 
sample preparation technique. The reliability of the grain-size distribution analysis is 
evaluated by comparing the X-ray diffraction results with those of a TEM study 
performed on the same sample. 

$2. THEORY 
The measurement of grain sizes by means of X-ray diffraction has been a subject 

of experimental and theoretical interest for nearly 80 years, and the literature on the 
subject is correspondingly extensive. In this section we summarize many of the 
concepts and results important to the data analysis that will be performed in sub- 
sequent sections; detailed information can be found in the indicated references. 

2.1. Unit-cell columns 
Scherrer demonstrated in 1918 that the size of a diffracting crystallitet is directly 

related to the width of the X-ray diffraction peaks arising from its crystalline struc- 
ture (Warren 1990). For crystallite sizes less than about 100 nm, this size-induced 
peak-broadening effect may be measured accurately enough to deduce an average 
grain size in the sample. Bertaut (1949, 1950) introduced the concept of considering a 
crystallite to be composed of “unit-cell columns” aligned perpendicularly to a given 
set of reflecting planes and extending from one edge of the crystallite to the other. 
This construction was motivated by his finding that the total diffracted intensity for a 
given Bragg reflection from a crystallite is simply the sum of the individual intensities 
diffracted (independently) by each of the unit-cell columns making up the crystallite. 
Since the individual crystallites contained in a sample also scatter independently, the 
total diffracted intensity from a collection of crystallites is just the sum of the inten- 
sities diffracted by all the unit-cell columns in the irradiated volume. 

In other words, it is the distribution of unit-cell column lengths, rather than the 
distribution of crystallite sizes, that governs the diffraction of X-rays from a poly- 
crystalline sample. The grain-size-induced contribution to the total Bragg-peak 
broadening must therefore be a function solely of the column-length distribution 
p ( L ) ,  where L is the length of a unit-cell column. Standard methods for analysing 
size-induced peak broadening, such as the Scherrer formula (Warren 1990) or the 
Williamson-Hall (1  953) size-strain analysis, provide an estimate solely for the 

?In this paper the terms crystallife and grain are used interchangeably to refer to the 
crystalline units separated by grain boundaries that make up a polycrystalline material. 
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Grain-size distribution estimated from X-ray diffraction projles 623 

volume-weighted average column length (L)vo,. A Fourier analysis of the Bragg peak 
profiles, on the other hand, can in principle deliver complete information regarding 
p(L) for L 6 lOOnm (Warren 1990); usually, however, such an analysis is capable of 
providing reliable values for only two weighted average column lengths: (L)area and 
(L)vo, (Wagner 1966). The latter quantities are defined and discussed in appendix A. 

2.2. Converting column lengths to crystallite sizes 
If we designate the size of an individual grain by the symbol D, then the size 

distribution of a large number of crystallites can be approximated by a continuous 
function g(D) (appendix A). For a given sample the grain-size distribution function 
g(D) generally differs quite significantly from the column-length distribution func- 
tion p(L). Typically, we are interested in measuring the former, but X-ray diffraction 
(as indicated above) directly measures only the latter. Converting p ( L )  to g(D) 
requires knowledge of the shape of each crystallite, since the distribution of column 
lengths in a given grain is related to the grain’s geometric boundaries. 

For the case when all the crystallites of a sample have roughly the same shape, 
Smith (1976) has derived the general relation between the two distributions: 

where N is a normalization factor and f ( L o ,  Do)dL is the number of columns 
normal to the reflecting planes with lengths between Lo and Lo + dL in a single 
crystallite of size Do. Note that f ( L o ,  Do) = 0 if Do is too small to accommodate a 
column of length Lo for the assumed shape. For spherical crystallites, 

( 0  i f L > D ,  

valid for all reflections (hkl) (Smith 1976). For all other shapes, it is difficult to derive 
expressions forf(L, D) that hold for the general case of orientational averaging (i.e. 
when the relative orientation between the crystallite boundaries and the crystallite 
planes is random); nevertheless, Goodisman (1 980) has succeeded in developing a 
method for determining f( L, D) for orientationally averaged space-filling rectangu- 
lar prisms and rhombohedrons. In appendix B we make use of his expression of 
f (L,  D) for cubic crystallites. 

2.3. Estimating g(D) from diffraction data 
As will be seen below, complete information regarding the column-length dis- 

tribution p ( L )  is contained in the Fourier coefficients of the Bragg-peak profiles 
measured in a diffraction experiment. After correction for instrumental broadening 
(Klug and Alexander 1974), a Bragg-peak profile may be expressed as a Fourier 
series having the following form: 

L=-m 

where L is the (real-space) conjugate variable to s - so and A ( L )  and B(L) are the 
cosine and sine Fourier coefficients respectively. The variable s = (2 sin O)/A is a 
function of the diffraction angle 0 and the X-ray wavelength A; the diffraction peak is 
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624 C. E. Krill and R. Birringer 

assumed to be centred at so. Equations for determining the appropriate set of L 
values appearing in eqn. (3) for a given peak are given by Wagner (1966) and Warren 
(1990). Bertaut (1949,1950) proved that the quantity L in eqn. (3) is the length of a 
column of unit cells perpendicular to the diffracting planes responsible for the Bragg 
peak (i.e. L has the same meaning as in $2.1). 

Warren and Averbach (1950,1952) showed that the coefficients A ( L )  and B(L) 
can be written as the product of a purely size-broadening term and a purely strain- 
broadening term: A ( L )  = Asize(L)AStrain(L). Furthermore, they developed a proce- 
dure for determining the individual size and strain contributions from measurements 
of two or more orders of the same Bragg reflection (Warren 1959, 1990). This latter 
step is important for the characterization of most nanocrystalline materials, since the 
highly non-equilibrium procedures by which they are prepared (e.g. inert-gas con- 
densation + compaction or ball milling) generally lead to the incorporation of sig- 
nificant amounts of inhomogeneous strain. 

2.3.1. Fourier coeflcient diflerentiation 
Bertaut (1949, 1950) proved that it is possible to determine the column-length 

distribution p(L) from the second derivative of the cosine Fourier size coefficients 
A~~~~ ( L)  : 

From the form of eqn. ( 1 )  we see that at least one additional differentiation is 
necessary to determine g ( D )  from p(L) (Smith 1976). Unfortunately, when the 
Bragg-peak profiles are corrected for instrumental broadening by deconvolution in 
Fourier space (Stokes deconvolution (Klug and Alexander 1974)), the Asize(L) 
against L curve is usually superimposed with oscillations arising from the finite 
cut-off in reciprocal space (Bertaut 1952, Popescu and Benes 1977). Furthermore, 
counting statistics propagate to cause small shifts in the Asize(L) values (Wilson 1967, 
1968, 1969). Finally, the Warren-Averbach size-strain separation procedure intro- 
duces significant additional uncertainties (Delhez et al. 1980). These sources of error 
cause fluctuations in the derivatives of Asize(L) that grow with increasing number of 
differentiations. Unless size-strain separation is made superfluous by a lack of inho- 
mogeneous strain in the sample, the noise inp(L) calculated from Asiz(L) can easily 
exceed loo%, rendering the values obtained from eqn. (4) meaningless (Delhez et al. 
1980). 

While various techniques have been developed to stabilize the differentiations 
necessary for calculatingp(L) (PIuSescuet al. 1974, Le Bail and Louer 1978), such a 
stabilization process itself can significantly affect the derived distribution function, 
making it unclear to what extent such methods recover information about the true 
grain-size distribution function. The additional differentiation required to determine 
g ( D )  from p ( L )  further exacerbates the problem. 

Two recently developed indirect Fourier analysis methods are able to avoid the 
oscillations associated with the usual determination of Asize ( L )  by direct Fourier 
transformation. Both the method of Balzar (1992, 1993) and that of Weissmuller 
et al. (1997) show promising results for determining grain-size distributions in sam- 
ples with moderate levels of internal strain, although extensive comparisons with size 
distributions measured directly by TEM have yet to be performed. 
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Grain-size distribution estimated from X-ray difraction pro3le.s 625 

2.3.2. Known or assumed distribution form 
The functional dependence of the cosine Fourier size coefficients Asim(L) on L 

provides two independent weighted average column lengths (Bertaut 1949, 1950, 
Wagner 1966, Warren 1990); 

m 
(L)vol = 2 1 Asize(L) dL. 

0 

Using the equations derived in appendix B for converting between weighted average 
column lengths and grain sizes, one can calculate two independent weighted averages 
over the grain-size distribution g ( D )  (namely (D)ar,a and (D),,J from the Fourier 
analysis results. If g ( D )  can be approximated by a known function having two free 
parameters, then these parameters can be determined from (D)area and (D),,,. 

Estimating g ( D )  from two independent moments of the size distribution is not a 
new idea. Using small-angle X-ray scattering (SAXS), Harkness et al. (1969) eval- 
uated two ratios of moments ofg(D) ( ( D 3 ) / ( D 2 )  and ( D 7 ) / ( D 5 ) )  in samples contain- 
ing spherical Guinier-Preston (GP) zones. These ratios were then used to determine 
the parameters of a log-normal approximation for the size distribution of the GP 
zones. A combination of SAXS and an assumed log-normal distribution form was 
also employed by Whyte et al. (1972) to evaluate particle-size distributions of Pt 
dispersions on alumina cata1ysts.t 

That grain-size distributions in nanocrystalline materials made by the inert-gas 
condensation method can be well described by a log-normal function has been 
verified experimentally by Granqvist and Buhrman (1976) and Haas and Birringer 
(1992). The (normalized) log-normal distribution has the form 

where Do and 0 are constant parameters describing the median and variance of the 
distribution respectively and gLN(D) dD = 1.  Substituting eqn. (6) into eqns. 
(A3a) and (A3b)  yields expressions for the area-weighted average grain size 
(D)a,a and the volume-weighted average grain size (D)vol in terms of Do and 0 for 
a log-normal distribution (Hinds 1982): 

(')area = DO ~ X P  ($ ln2 a), 

( D ) " , ~  = D~ exp ($ In2 c). 

(7 a) 

(7 b )  

The quantities (~5),,~, and (~5),,~ can be related to DO and 0 using eqns. (B 4) and 
(B 5) ;  

(L)a,ea = :Do exp (2 ln2 c) (spheres), (8 a )  

(L)",, = ;Do exp ($ ln2 0) (spheres), (8 b) 

t Difficulties in accurate data analysis arising from interparticle interference (Weissmiiller 
et af. 1995) and pore scattering (Sanders et al. 1993) preclude using SAXS to evaluate grain- 
size distributions in compacted nanocrystalline materials. 
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626 C. E. Krill and R. Birringer 

assuming spherical grains. If (L),,,, and (L)vol have been measured for a given 
sample by X-ray diffraction, eqns. (8) can be solved for Do and 0, thus fully deter- 
mining the corresponding log-normal distribution function &N (D). 

Note that this strategy may be followed for any two-parameter distribution 
function yielding finite (D),,,, and values. Furthermore, even when the func- 
tional form of g ( D )  is not known for a given sample, an estimate for the width of 
g ( D )  can be gained from the ratio of (D)vol to (D)area. We now demonstrate the 
experimental utilitly of this approach by applying it to a sample of nanocrystalline 
Pd and comparing the resulting grain-size averages and distribution with those 
determined by direct observation using TEM. 

0 3. EXPERIMENTAL DETAILS 
Samples of nanocrystalline Pd were prepared by inert-gas condensation and 

subsequent compaction (Birringer et al. 1984). Pd wire (purity, 99.95%) was evapo- 
rated in a W boat into a He (purity, 99.996%) atmosphere of pressure 3mbar 
(3 x lo2 Pa); the Pd atoms condensed in the gas phase into crystallites, which were 
then collected by convection onto a liquid-Nz cooled cold finger. The resulting 
powder was scraped from the cold finger into a uniaxial press, evacuated to less 
than lop6 mbar ( Pa), in which the powder was subsequently compacted at  room 
temperature and a pressure of 2 GPa into pellets 8 mm in diameter and 0 - 2 4 - 5  mm 
thick. 

All X-ray diffraction measurements were carried out on a Siemens D-5000 
diffractometer in 8-8 geometry using Mo K a  radiation (A  = 0.709 32 A). Both 
the nanocrystalline samples and the reference materials were measured at  a step 
width of 0.01" for typical count times of 20s. The KaZ component of the 
scattering was removed using the Rachinger algorithm (Klug and Alexander 
1974). 

Two different coarse-grained samples were prepared for measuring the instru- 
mental broadening function of the diffractometer: firstly unannealed Pd powder 
(purity, 99.9+'%; particle size less than 60 pm); secondly unannealed lanthanum 
hexaboride (LaB,) powder (purity, 99%; particle size 5-8pm) placed in glass 
holders. Efforts to increase the grain size of the Pd powder through annealing at  
temperatures above 600°C in vacuum resulted in significant sintering of the powder 
but in no measurable sharpening of the diffraction peaks. LaB6 powder is known to 
give extremely sharp diffraction peaks (Balzar 1992, 1993); indeed, the peaks mea- 
sured from the LaB6 standard were narrower than those resulting from the Pd 
standard, implying that a residual amount of size and/or strain broadening was 
present in the Pd standard. A comparison between analyses made with each refer- 
ence material was used to judge the significance of the residual Pd broadening on the 
grain-size analysis (44.3.1). 

TEM was carried out on thin samples of nanocrystalline Pd prepared by embed- 
ding pieces of a pellet in epoxy and cutting them with a diamond microtome blade 
into slices 3CL50nm thick. Dark-field images were recorded at  a magnification of 
30 OOOx on a JEOL 200CX microscope at 200 kV from the ( 1  11) diffraction ring. 
Subsequent image analysis was performed by digitizing images with a video camera 
connected to a personal computer. Processing of the digitized images was carried out 
using standard image analysis software. 
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Fig. 1 

I I I I I 1 
7.0 17.5 18.0 18.5 19.0 19.5 

20  25  35 40 45 

X-ray diffraction scan of an inert-gas-condensed nanocrystalline Pd pellet. The inset compares 
the (1 11) peak of nanocrystalline Pd with that of the coarse-grained Pd reference. 

44. RESULTS 

4.1. X-ray dzJiraction of nanocrystalline Pd 
Diffraction scans of a nanocrystalline Pd pellet and of the Pd standard are 

displayed in fig. 1. The Warren-Averbach Fourier analysis (Warren 1990) was car- 
ried out on both the ( l l lH222)  and the (200H400) diffraction peak pairs. This 
necessitated removal of adjacent peaks by fitting them with a Lorentzian (Cauchy) 
function, subtracting the fitted curve from the overall scan and smoothing out noise 
near the former position of the removed peak. Deconvolution of instrumental broad- 
ening was carried out by the Stokes method (Klug and Alexander 1974), and 
the Fourier transformations were calculated using a fast Fourier transform (FFT) 
routine (Press et al. 1989). After deconvolution, each peak profile was corrected for 
the angular dependence of the Lorentz, polarization and atomic scattering factors 
(Delhez et al. 1980). Values for Asize(L) and the rms inhomogeneous strain ( C ~ ( L ) ) ' / ~  
as a function of L were calculated from the diffraction pairs using a modified version 
of the strain-correction equation proposed by Warren and Averbach (Delhez et al. 
1980): 

where d is the spacing of the diffracting planes. According to Delhez et al. (1980), 
the Fourier size coefficients A"'"(L) derived from eqn. (9) are less sensitive than those 
derived from the equation of Warren and Averbach to statistical errors in the 
measurement of the second-order reflection, which is usually subject to greater 
uncertainty than the first-order peak owing to the second-order peak's reduced 

D
ow

nl
oa

de
d 

by
 [

St
an

fo
rd

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 0
6:

36
 0

4 
O

ct
ob

er
 2

01
2 



628 C. E. Krill and R. Birringer 

Fig. 2 

0 10  2 0  40 50 
L (n;; 

Plot of normalized cosine Fourier size coefficients Asiz(L) (. . . . . .) against column length L 
calculated from the (1 1 1 )  and (222) diffraction peaks of fig. 1 using the Warren- 
Averbach method. The instrumental broadening was deconvoluted using the scan of 
coarse-grained Pd. The area-weighted average column length (L),,,, is given by the 
intercept of the broken line with the L axis; the volume-weighted average column 
length (L)vo, is twice the area under the ASIZe(L) curve. The solid curve represents 
the cosine Fourier coefficients of a log-normal distribution of spherical grains 
having the same area and volume-weighted average sizes as those calculated from 
the experimentally determined cosine Fourier size coefficients (see 0 5.1.2). 

intensity. Finally, the resulting Asize( L )  coefficients were normalized such that 

The normalized ASiZe(L) coefficients evaluated from the (1  1 1)4222) diffraction 
peak pair are plotted as a function of L in fig. 2. Here, the tangent used to calculate 
(L)area is also indicated (eqn. (5 a)); the volume-weighted average column length 
(L)vo, was calculated from the area beneath the ASiZe(L) curve according to eqn. 
(5b). The conversion between average column length and average grain size was 
accomplished using eqns. (B4) and ( B  5 ) ,  assuming spherical grains. The log-normal 
grain-size distribution having the same area and volume-weighted grain sizes as 
those measured by the Warren-Averbach method was then determined by solving 
eqns. (7) for the parameters Do and (T. The results of this analysis are collected in 
table 1. 

ASiZe(0) = 1.t 

?The manner in which this normalization should be carried out is a matter of some 
controversy, since the very-low-L cosine Fourier size coefficients often display a non-physical 
'hook.' As suggested by Warren (1990). we determine AsIze(O) by fitting a straight line to  the 
AsIze(L) coefficients a t  L values just above the 'hook' and extrapolating to L = 0 (Delhez et al. 
1980): Alternatively, Rothman and Cohen (1969) recommend fitting a straight line to a plot of 
In [AS'Ze(L)] against L and extrapolating to L = 0. 
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Grain-size distribution estimated from X-ray difraction profiles 629 

Table 1. Results from the Fourier analysis of the X-ray diffraction scan of inert-gas-con- 
densed Pd (fig. 1). The area-weighted average column lengths (L)arm and volume- 
weighted average column lengths (L)vol were calculated from plots of the (1 11H222) 
and (200)-(400) cosine Fourier size coefficients AS'"(L) against L as in fig. 2; the scan 
of coarse-grained Pd was used to deconvolute the instrumental broadening. The 
remaining columns, namely the area-weighted average grain sizes (D),,,, the 
volume-weighted average grain sizes (D)vol, the lo normal distribution parameters 
Do and u, and the maximum r m s  strain max [(e2(L)Fi2], are calculated as described in 
the text ($4.1). (The rms strain (e2(L)) ' l2  decreases with increasing column length L. 
In order to facilitate comparison of strain values, max [ ( E ' ( L ) ) ] / ~ ]  was determined by 
extrapolating ( e 2 ( ~ ) ) " 2  to L = Onm.) 

(')area (')vo~ (D)bPW (D)!kp) DO max[(e2(L))'/21 
(nm) (nm) (nm) (nm) (nm) U (%I 

(111)-(222) 1 3 . l f l  1 9 . 6 f 1  19.6f1 2 6 . l f 1  9 . 5 f 3  1.7140.15 0.31f0.03 
(200H400) 9.4 f 1 15.4 f 1 14.2 f 1 20.5 f 1 5.6 f 2 1.84 f 0.19 0.47 f 0.05 

4.2. Transmission electron microscopy analysis of nanocrystalline Pd 
Dark-field images of thin slices from the nanocrystalline Pd sample analysed by 

X-ray diffraction were obtained by TEM (fig. 3). For the determination of grain 
sizes, we used the equivalent-circle diameter D, which is defined in terms of the 
projected area A in the image according to D = 2(A/n)'"; that is, D is the diameter 
of a circle having the area A. This is a useful measure of grain size in the case of our 
nanocrystalline samples because the grains are roughly equiaxed, and the thick- 
ness of the TEM samples is larger than that of most of the grains. Thus the maxi- 
mum dimension of the vast majority of grains lies within the sample (rather 
than partly above or below it because it has been cut off during sample preparation). 
Since the grains are roughly equiaxed, the maximum dimension of the projected 

Fig. 3 

Dark-field transmission electron micrograph of inert-gas-condensed Pd. The actual area 
analysed was approximately 23 times larger than that shown in the figure. 
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630 C .  E. Krill and R. Birringer 

Fig. 4 

- _ - _  histogram fit 
- x-ray (111)/(222) 

0 10 20 30 4 0  5 0  
Grain Size (nm) 

Histogram of grain sizes in nanocrystalline Pd measured in dark-field TEM micrographs (as in 
fig. 3) using computer-assisted image analysis. A total of 61 50 grains was counted. The 
broken curve is a weighted least-squares fit of a log-normal distribution function to the 
count frequencies of the histogram; the fit parameters Do and u are 8.4nm and 1.88 
respectively (table 2). The solid curve is the log-normal distribution determined by 
Fourier analysis of the (1 1 1 H222)  X-ray diffraction peaks assuming spherical grains 
and using coarse-grained Pd as reference (Do  = 9.5 nm and u = 1.71). The histogram 
and the log-normal distributions are normalized such that the area under each is unity 
in the grain-size range covered by the histogram. 

grain image will be about the same as the true maximum dimension of each grain. 
There is therefore no need for stereological correction, and the equivalent-circle 
diameter as defined above should well approximate the lateral dimension of each 
grain. 

The histogram constructed from image analysis of fig. 3 is displayed in fig. 4. The 
uncertainties associated with each bin are calculated from the corresponding particle 
count. Using these uncertainties as weighting factors, we perform a least-squares fit 
of a log-normal distribution to the histogram (broken line in fig. 4). The good 
agreement is consistent with the general result that inert-gas-condensed materials 
display a log-normal size distribution (Granqvist and Buhrman 1976, Haas and 
Birringer 1992). In comparison with the log-normal fit, the histogram appears to 
be slightly bimodal, a deviation that may have originated during the compaction of 
the inert-gas-condensed powder into pellet form. Using discrete versions of eqns. 
(A2), (A3a)  and (A36), we calculate (D),,,, (D),,,, and (D)"", from the list of 
measured grain sizes (or, equivalently, from the histogram bin frequencies in fig. 4). 
The results are collected in table 2 together with the parameters Do and o of the log- 
normal least-squares fit. 
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Grain-size distribution estimated from X-ray diffraction profiles 63 1 

Table 2. Comparison of number-, area-, and volume-weighted average grain sizes (assuming 
spherical crystallite shape) as determined by transmission electron microscopy (TEM) 
and Fourier analysis (X-ray). The Fourier analysis was carried out using Pd and LaB6 
reference materials to determine instrumental broadening. The log-normal distribution 
parameters Do and u were determined in the case of TEM analysis from the best-fit 
log-normal distribution to the histogram in fig. 4, whereas in the Fourier case they 
were determined from the weighted average grain sizes using eqns. (7). The number- 
weighted average grain size (D)!dA)-(222) could be measured directly by TEM but, in 
the case of X-ray diffraction, had to be calculated from the log-normal distribution 
parameters using eqn. (10). 

X-ray 

TEM Pd reference LaB6 reference 

(~)!:i)-(~~~) (nm) 9.8 f 1 I l . O h 3  10.1 f 3 
(D)!::)-(~*~) (nm) 19.0 f 2 19.6 f 1 17.8 f 1 

23.2 f 2 26.1 f 1 23.5 f 1 

Do (nm) 8.4 f 0.1 9.5 f 3 8.8 f 3 

u 1.88 f 0.02 1.71 f 0.15 1.70 f 0.16 

( 1  I 1)-(222) 
(nm) 

4.3. Error analysis 

4.3.1. X-ray dzflraction 
Estimating the uncertainty in the grain-size values obtained by X-ray diffraction 

and TEM image analysis procedures is difficult because, in both cases, systematic 
uncertainty dominates statistical uncertainty. For the Fourier analysis, uncertainties 
in the Fourier coefficients arising from counting statistics in the peak profile can be 
calculated using the formulae derived by Wilson (1967, 1968,1969); however, for our 
measurements the resulting statistical uncertainties in (L),,,, and ( L)vo, were insig- 
nificant in comparison with the errors caused by strain correction (eqn. (9)), by 
Fourier oscillations (arising from the Stokes deconvolution step), by having to 
place and extrapolate the tangent to the small-L coefficients, and by the non-ideal 
nature of the reference scan. 

As mentioned above (0 2.3), the techniques used to prepare materials in a nano- 
crystalline form generally lead to the incorporation of significant amounts of 
inhomogeneous strain (c2 (L ) )  1/2 .  The accuracy of the strain correction equation 
(eqn. (9)) decreases with increasing t 2 ( L ) ) L 2 ,  where L is the unit-cell column 
length. Therefore either large ( e2 (L) ) ’ /  or large L can lead to errors in the values 
of ASiZe(L) calculated using eqn. (9). Since the quantity (L),,,, is determined from 
the ASize(L) values at small L (eqn. (5a)), (L),,,, should be insensitive to errors in the 
strain correction of eqn. (9) (Warren 1990). On the other hand, (L)vol is calculated by 
an integration of Asize(L) over L (eqn. ( 5  b)); therefore is expected to be highly 
sensitive to inaccuracies in the strain correction of the cosine Fourier coefficients 
at large L. This is mitigated by the fact that the strain correction term in eqn. (9) 
is proportional to A ( L )  itself, which falls rapidly to zero with increasing L, 
resulting in small absolute errors in Asize(L) at large L. Hence, significant systematic 
errors in (L)vo,, as calculated from eqn (5  b),  usually arise only when { E ~ ( L ) ) ’ / ~  is 
large. 
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632 C. E. Krill and R. Birringer 

Practical experience has shown that the grain-size values determined by X-ray 
diffraction and TEM fall within about 10% of each other when 
max [ ( E ~ ( L ) ) ' / ~ )  S 0.5%, as was the case for the Pd samples investigated here. Of 
the nanocrystalline samples we have characterized by X-ray diffraction, the majority 
of those that were prepared by inert-gas condensation, electrolytic deposition or 
chemical precipitation meet this condition; ball-milled samples, on the other hand, 
generally contain significantly higher amounts of inhomogeneous strain (for example 
Wagner et al. (1 992)). The applicability of eqn. (9) in the case of ball-milled samples 
has been called into question by van Berkum et al. (1994), who derived an alternative 
strain correction equation for highly strained materials. The values for (L),,,, 
derived from the alternative analysis differed considerably from those derived from 
eqn. (9) applied to a diffraction measurement of ball-milled Mo powder. Since no 
check of the true grain size was performed by TEM, it is not known with certainty 
that eqn. (9) failed in this case. Nevertheless, it is likely that the method proposed in 
this paper for estimating the grain-size distribution from (L)area and (L)v,,l values is 
inapplicable to most ball-milled and other highly strained materials. 

For samples containing moderate to little amounts of inhomogenous strain, the 
major source of systematic error in the values derived for (L),,,, and (L)vol arises 
from the correction for instrumental broadening. This requires an 'ideal' reference 
material with large grains ((D)"",,, 2 1 pm), no strain ( ( E ~ ( L ) ) ' / ~  = 0) and the same 
absorption coefficient as the sample to be measured (Delhez et af. 1980, van Berkum 
et al. 1995). These conditions are usually impossible to meet in practice. We have 
estimated this component of the systematic error by comparing the results obtained 
using two different non-ideal reference materials: coarse-grained Pd and LaB6 
powder. The latter sample gave sharper peaks than the former, implying that the 
Pd standard exhibited a certain amount of size and/or strain broadening. A compar- 
ison of the grain sizes in table 2 indicates that the values obtained with the LaB6 
standard are about 10% smaller than those obtained with the Pd standard. Since the 
generation of an 'ideal' reference scan from LaB6 data is subject to its own uncer- 
tainties (van Berkum et a f .  1995), one cannot be sure that the LaB6-calculated sizes 
are closer to the true average sizes than the Pd sizes, but it seems likely that the Pd- 
calculated values are somewhat too large. The fact that the TEM-calculated values 
lie closer to those calculated from the LaB6 standard lends support to this conclu- 
sion. In the literature, uncertainties in average column lengths as calculated by the 
Warren-Averbach method are generally assumed to be about 5-10% (for example 
Boldrick et al. (1992)); an error of f I nm (about 5%) covers the spread between our 
Pd- and LaB6-calculated sizes and was therefore assigned to the corresponding 
(L)area and (L)vol values. 

4.3.2. Transmission electron microscopy 
In the case of image analysis of transmission electron micrographs, the systema- 

tic errors again outweigh the statistical uncertainties once a sufficient number of 
grains has been measured. For the histogram in fig. 4, which was constructed 
from 61 50 grain measurements, the relative statistical uncertainties in (D),,,, 
(D),,,, and (D)vol were just O.88%, 1.3% and 1.9% respectively. Since only a 
small region of the sample was investigated, and since image analysis introduces 
its own systematic errors (such as when setting the grey-scale threshold for establish- 
ing crystallite boundaries), the total relative systematic uncertainty probably exceeds 
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Grain-size distribution estimated from X-ray difraction profiles 633 

5% for grain-size determination. In table 2 we have therefore assigned a relative 
error of 10% as the total uncertainty in the TEM measurements. 

The uncertainties in the log-normal fit parameters Do and u were calculated 
either from the error matrix of the least-squares fit to the histogram in fig. 4 (see 
log-normal parameters in the column headed TEM in table 2) or from standard 
error-propagation formulae for the parameters determined from X-ray data 
(Bevin ton 1969). Such formulae were also used to calculate the uncertainty in the 
(D)num (111h222) values in table 2 calculated from the resulting log-normal distributions 
(see 5 5.1.1). 

0 5 .  DISCUSSION 

5.1. Comparison of X-ray diffraction and transmission electron microscopy results 

5.1.1. Weighted average grain sizes 
Examination of the area-weighted and volume-weighted average grain diameters 

in table 2 results in good agreement between the (D)area and values as deter- 
mined by TEM and X-ray diffraction. Comparing the TEM values in table 2 with the 
(L),,,, and (L)vo, values in table 1 indicates that the agreement between the TEM 
and X-ray results would have been substantially worse had we not performed the 
conversion between average column length and average grain size, a frequently 
neglected correction. 

As discussed in 52.3.2, although the Fourier analysis technique can be used to 
determine only two weighted average grain sizes directly, knowledge of the form of 
the grain-size distribution function g ( D )  may make it possible to calculate the other 
average sizes. In the case of inert-gas-condensed Pd, g ( D )  is known to be log-normal 
in form (Haas and Birringer 1992), and the distribution parameters Do and u can be 
determined from (D)area and using eqns. (7). From these parameters, for 
example, the number-weighted average grain size can be calculated (Hinds 1982): 

( D ) ~ ~ ~  = D~ exp (4 ]n2 0). (10) 
The (D)n,m values in table 2 indicate good agreement between the number-weighted 
average grain size determined by TEM and that calculated from X-ray diffraction, 
although this may be accidental, since error propagation through eqn. (10) yields a 
large uncertainty (about 30%) in the (D)n,, values calculated from diffraction data. 

In order to perform the conversion between average column length and average 
grain size, one must assume a characteristic geometrical form for the crystallites. In 
tables 1 and 2 we have assumed spherical grains, but the same calculations could 
have been carried out just as well assuming another characteristic shape. Using eqns 
(B6) we can determine the area- and volume-weighted average grain sizes for an 
assemblage of cube-shaped grains having the (L) and (~5),,~, values determined by 

length averages were determined from (1 11H222) peaks and deconvolution was 
performed using the Pd reference. These values are in substantially poorer agreement 
with the TEM-determined values than those calculated under the assumption of 
spherical grains (table 2). Calculating the log-normal distribution parameters corre- 
sponding to these average grain sizes for cube-shaped crystallites, we find that 
Do = 18.5 f 55nm and (T = 1.39 f 0.19. A mere glance at the histogram in fig. 4 

Fourier analysis: (D):$ = 24.3 f 2 nm and (D),,ZLs) (ar a = 27.1 f 1 nm, where column- 
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634 C. E. Krill and R. Birringer 

confirms that these values are far less reasonable than those determined under the 
assumption of spherical grains. Therefore we can conclude that the average crystalline 
shape in the inert-gas-condensed nanocrystalline Pd sample is more closely spherical 
than cubic. 

5.1.2. Grain-size distributions 
As discussed in $2.3.1, direct differentiation of the cosine Fourier size coefficients 

Asix(L) to obtain the column-length distribution p ( L )  using eqn. (4) is nearly always 
unsuccessful owing to the magnification of errors that occurs during differentiation; 
this was confirmed for the data in fig. 2. We can, however, use the reverse process, 
namely integration of eqn. (4), to evaluate the goodness of fit of the log-normal size 
distribution calculated from the experimentally determined (D),,,, and (D)vo, values. 
Using the log-normal distribution parameters in table 1, we employ eqns. (I) ,  (2) and 
(6) to calculate p ( L ) .  We then solve eqn. (4) for the ASiZe(L) values corresponding to 
this column-length distribution and plot the resulting coefficients as the solid curve in 
fig. 2. The agreement between the measured and calculated coefficients is surprisingly 
good throughout the measurable column-length range, lending support to our con- 
tention that the grain-size distribution is well described by a log-normal function. 

Despite this close fit, the log-normal distribution function determined by X-ray 
diffraction differs somewhat from that determined by a fit to the histogram of grain 
sizes resulting from image analysis (solid and broken curves respectively in fig. 4). 
Deviations are most apparent at  the smallest grain sizes while, above about 15 nm, 
the curves fall within the uncertainty bounds of the individual histogram bins. This 
behaviour is not surprising, since the X-ray log-normal distribution was determined 
solely from the values for (D)area and (D)vo,, both of which lie at larger grain sizes. 
The integrated intensity of the X-ray diffraction signal from a single crystallite is 
proportional to the grain volume; hence the accuracy of grain-size information 
gained from X-ray diffraction should be highest near the volume-weighted average 
grain size. This is evident in a comparison of the volume-weighted size distributions 
measured by TEM image analysis with those derived from X-ray diffraction (fig. 5). 
The fit to the volume-weighted frequency histogram is quite good for the curve 
determined from the (1 1 1 H222) Fourier analysis of diffraction data (solid curve), 
especially above about 15nm; here the agreement is noticeably better than that of 
the volume-weighted log-normal function fitted to the histogram itself (broken 
curve). 

5.2.  Correcting for stacking faults and twin boundaries 
In the previous sections we have assumed that the crystallites making up a 

nanocrystalline sample contain no defects, that is that each grain is a tiny single 
crystal. Most crystalline materials, however, contain a variety of defects, such as 
vacancies, pores, dislocations, stacking faults and twin boundaries. The latter two 
are known to reduce the apparent grain size calculated from diffraction peak broad- 
ening (Wagner 1966, Warren 1990). Such defects decrease the spatial extent of the 
columns contributing to the coherent scattering of X-rays; that is, the size of the 
resulting ‘coherent scattering region’ (CSR) bounded by the defects (and grain 
boundaries) is smaller than that of the crystallite containing the defect(s). Only if 
the crystallites in a sample contain no stacking faults or twin boundaries are the 
average sizes (D)a,e, and (QvOl (calculated from (~5),,~, and respectively) 
estimates for the true area- and volume-weighted average grain sizes. Since stacking 
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Grain-size distribution estimated from X-ray difraction profiles 635 
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Volume-weighted grain-size distributions for nanocrystalline Pd calculated from the histogram 
and curves in fig. 4. The (volume-weighted) histogram and the volume-weighted log- 
normal distributions are normalized such that the area under each is unity in the grain- 
size range covered by the histogram. 

faults or twins are nearly always present to some extent in real materials, the (D)area 
and values calculated from diffraction analysis are actually area- and volume- 
weighted average CSR sizes rather than the desired weighted average grain sizes. 

This problem is not limited to X-ray diffraction, however. The same defects that 
reduce the apparent grain size in diffraction measurements can also limit the spatial 
extent of crystallites imaged by dark-field techniques in TEM. The effect of twin 
boundaries on the CSRs seen in dark-field TEM is identical with that measured by 
X-ray diffraction. Stacking faults, on the other hand, are handled differently by these 
techniques: coherent scattering generally ends at a stacking fault in both X-ray 
diffraction and TEM, but the diffraction conditions employed in ordinary dark- 
field microscopy lead to simultaneous imaging of the CSRs on both sides of the 
stacking fault, rendering the stacking fault invisible. The size distributions of CSRs 
seen by X-ray diffraction and by dark-field TEM differ therefore according to the 
number density of stacking faults. 

For materials having fcc symmetry, such as our Pd samples, it is possible to 
determine the stacking-fault probability (Y from peak-shift measurements (Wagner 
1966, Warren 1990). The most accurate way to determine peak shifts is to measure 
the intervals between adjacent peak pairs, such as (l l lH200) or (222)-(400), in a 
nanocrystalline sample and to compare them with the corresponding intervals in a 
coarse-grained reference made of the same material. Using the equations given by 
Warren (1990) relating peak shifts to a, we find that CZ M 0 for our nanocrystalline Pd 
sample, within the uncertainty of the measurements. Hence, the CSR size distribu- 
tions observed by X-ray diffraction and dark-field TEM should be identical in our 
sample. 
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636 C. E. Krill and R. Birringer 

The presence of stacking faults or twin boundaries in a nanocrystalline material 
leads to a dependence of (Qara and on the Bragg-peak pair used in the 
Fourier analysis (Wagner 1966, Warren 1990). According to Warren (1990), 
the difference between (L),,,, and (L)~~'-'"OO' is directly related to a weighted 
overall faulting probability 1.50 + p, where is the twinning probability. From this 
relationship? and the data in table I ,  we calculate 1.50 + p M /? = 0.020 f 0.007 for 
our nanocrystalline Pd sample. This value for p corresponds to the presence, on 
average, of a twin boundary every l/p = 50 f 17 ( 1  11) planes in the grains of 
nanocrystalline Pd. Since the separation between (1 11) planes in Pd is 0.225 nm, 
the average distance between twins is about 1 1  f 4nm; therefore a significant frac- 
tion of the larger grains contain twin boundaries. In fact, from Warren's (1990) 
treatment of faulting, one can estimate that, in the absence of such twins, (L),,,, 
would be approximately 18.4 f 5 nm. That is, the area-weighted CSR sizes measured 
by X-ray diffraction and TEM in our nanocrystalline Pd sample are nearly 30% 
smaller than the true' (D)area. 

(111)-(222) 

8 6 .  CONCLUSIONS 
Comparison of average grain sizes in nanocrystalline Pd measured by TEM and 

X-ray diffraction indicates that reliable values for the area- and volume-weighted 
average effective grain sizes (i.e. coherent scattering regions) can be determined by 
the Fourier analysis of diffraction peak profiles using the method of Warren and 
Averbach. Since analysis of diffraction data directly yields average column lengths, it 
is necessary to perform a conversion to average grain size before comparing the 
resulting values with those determined by microscopy; this conversion was best 
performed by assuming a spherical average grain shape. A method is developed 
for estimating the overall grain-size distribution from X-ray diffraction data, pro- 
vided that the functional form of the distribution is known independently. This idea 
was tested on inert-gas-condensed Pd, for which the grain-size distribution is 
expected to be log-normal in shape. At smaller grain sizes the size distribution 
calculated from diffraction data deviated somewhat from the frequency histogram 
measured by microscopy but, when the calculated and measured distributions were 
weighted by the grain volume, the agreement was surprisingly good throughout the 
range of measured grain sizes. An analysis of the twin-boundary probability in this 
nanocrystalline Pd sample suggests that the area-weighted average grain sizes mea- 
sured by X-ray diffraction and TEM are about 30% smaller than the area-weighted 
average grain size corrected for the presence of faulting. 
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?There is a misprint in Warren's equation for -(dAf/dL),,, (Warren 1990, p. 293): the 2 
in the denominator should be a 4. 
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Grain-size distribution estimated from X-ray diffraction proJiles 637 

APPENDIX A 

WEIGHTED AVERAGE GRAIN SIZES AND UNIT-CELL COLUMN LENGTHS 
Assuming D to be a measure for the size of an individual crystallite (Matyi et al. 

1987), we may define a continuous function g(D)  that approximates the distribution 
of D values in a given sample; the number of crystallites having a size between Do 
and Do + dD is defined to be g(Do) dD (within a normalization factor). The jth 
moment (D‘) of the distribution is defined by 

whereby g(D)  is often normalized so that g(D)  dD = 1. A variety of character- 
istic average grain sizes may be expressed in terms of the moments of the distribution. 
For example, the arithmetic mean size (D)num (also called the number-weighted 
average size) is defined as 

= (D’). (A 2) 

The arithmetic mean size is by no means the only useful average over the 
distribution function g(D);  depending on the application and/or measurement 
technique, one often needs a weighted average of g(D) (Hillard et al. 1968, Hinds 
1982, Krill and Birringer 1996). The area-weighted average grain size is 
computed by weighting g ( D )  by the quantity kD2 proportional to the cross-sectional 
area of a grain of size D, where k is a geometry-specific constant. Similarly, volume 
weighting is achieved by multiplying g(D) by a factor kD3. Mathematically, the 
area-weighted and volume-weighted average grain sizes are defined in analogy to 
(Djnum: 

The column-length distribution p(L) is defined such that p(&) dL is the number 
of columns having lengths between & and LO + dL (within a normalization con- 
stant). Thejth moment of p ( L )  is defined exactly as in eqn. (A I): 

(LJ) = (rLJp(L)dL)/(/:p(L)dL). 0 

Since each unit-cell column is oriented perpendicularly to the atomic planes respon- 
sible for a given Bragg diffraction peak, the areas 6a of each column projected onto 
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638 C. E. Krill and R. Birringer 

the diffracting planes (i.e. the column cross-sectional area) are identical. In analogy 
to eqn. (A 3 a), the area-weighted average column length (L)area is given by 

= (L ’ ) .  (A 5 )  

Similarly, the volume of a column of length L is 6a L. The volume-weighted average 
column length (L)vol is defined in analogy to eqn. (A 3 b): 

Note that, because each column has the same cross-sectional area, is identical 
to (L)num; therefore the designations ‘number-weighted’ and ‘area-weighted’ are 
interchangeable for the case of column averages. Similarly, the volume-weighted 
average column length is identical with the length-weighted average column length. 

A P P E N D I X  B 

DERIVING CONVERSION FORMULAE BETWEEN WEIGHTED AVERAGES OF 
GRAIN-SIZE A N D  COLUMN-LENGTH DISTRIBUTIONS 

If all the grains in a given sample have approximately the same shape, one can 
derive relationships between the weighted average grain size and column lengths. Here, 
we calculate conversion formulae for collections of spherical or cubic crystallites. 

For the case of spherical grains, replacing p ( L )  in eqn. (A4) by the integral in 
eqn. (l) ,  substituting the expression forfsphere(L, D) from eqn. (2) and reversing the 
order of integration yields 

(L’) = ( 5 J , x L ’ + ’ S * g ( D ) d D d L ) / ( q ~ r L ~ ~ g ( D ) d D d L )  L 

= (1; g ( D )  J” L’+’ dL dD) / (1; g ( D )  1; LdL dD) 

- - 2 (r g(D)o”’ dD) / (jr g(D)D2  dD) (spheres). 

0 

(B 1)  
j + 2  0 

Using eqn. (A I ) ,  we may express (L’) in terms of the ( j  + 2)th and second moments 
of g ( D ) :  

(spheres). 
2 (0”’) (L’) = - - 

J -k 2 (0’) 

Calculation of the area- and volume-weighted averages ofp(L) for a collection of 
spherical crystallites in terms of the area- and volume-weighted averages of g ( D )  is 
now straightforward. Combining eqns. (A 5) and (B 2), we express (L),,,, in terms of 
moments of g ( D ) :  
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Grain-size distribution estimated from X-ray diffraction profiles 639 

which, in conjunction with eqn. (A 3 a), yields the conversion relation between (Qarea 
and (D),,,, for spheres: 

(')area = 3 (D)area (spheres). (B 4) 

Similar argumentation for the case of (L)vol gives 

For the case of cubic crystallites, we use Goodisman's (1980) expression for the 
orientationally averaged column-length distribution of a cubefcube(L, 0). The com- 
plexity off,,&(L, D) necessitates numerical evaluation of the integral with respect to 
L resulting from the substitution of eqn. (1) into eqn (A 4). In terms of the equiva- 
lent-sphere measure D = ( 6 / 7 ~ ) ' / ~ a  for a cube of side length a, our calculations yield 
the following conversion formulae for orientationally averaged cubic grains 
(Underwood 1970, Weissmuller et  al. 1997): 

2 113 
(')area = j (6) (')area M 0.5373(~)area (cubes), (B6a) 

(L)vol M 0~7227(D)v01 (cubes). (B 6 b) 
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